A dynamic learning-based ECG feature extraction method for myocardial infarction detection

Author:

Sun QinghuaORCID,Xu Zhanfei,Liang Chunmiao,Zhang Fukai,Li Jiali,Liu Rugang,Chen Tianrui,Ji BingORCID,Chen Yuguo,Wang Cong

Abstract

Abstract Objective. Myocardial infarction (MI) is one of the leading causes of human mortality in all cardiovascular diseases globally. Currently, the 12-lead electrocardiogram (ECG) is widely used as a first-line diagnostic tool for MI. However, visual inspection of pathological ECG variations induced by MI remains a great challenge for cardiologists, since pathological changes are usually complex and slight. Approach. To have an accuracy of the MI detection, the prominent features extracted from in-depth mining of ECG signals need to be explored. In this study, a dynamic learning algorithm is applied to discover prominent features for identifying MI patients via mining the hidden inherent dynamics in ECG signals. Firstly, the distinctive dynamic features extracted from the multi-scale decomposition of dynamic modeling of the ECG signals effectively and comprehensibly represent the pathological ECG changes. Secondly, a few most important dynamic features are filtered through a hybrid feature selection algorithm based on filter and wrapper to form a representative reduced feature set. Finally, different classifiers based on the reduced feature set are trained and tested on the public PTB dataset and an independent clinical data set. Main results. Our proposed method achieves a significant improvement in detecting MI patients under the inter-patient paradigm, with an accuracy of 94.75%, sensitivity of 94.18%, and specificity of 96.33% on the PTB dataset. Furthermore, classifiers trained on PTB are verified on the test data set collected from 200 patients, yielding a maximum accuracy of 84.96%, sensitivity of 85.04%, and specificity of 84.80%. Significance. The experimental results demonstrate that our method performs distinctive dynamic feature extraction and may be used as an effective auxiliary tool to diagnose MI patients.

Funder

the Major Basic Program of Shandong Provincial Natural Science Foundation

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3