Machine learning-based atrial fibrillation detection and onset prediction using QT-dynamicity

Author:

Grégoire Jean-MarieORCID,Gilon CédricORCID,Vaneberg Nathan,Bersini1 Hugues,Carlier StéphaneORCID

Abstract

Abstract Objective. This study examines the value of ventricular repolarization using QT dynamicity for two different types of atrial fibrillation (AF) prediction. Approach. We studied the importance of QT-dynamicity (1) in the detection and (2) the onset prediction (i.e. forecasting) of paroxysmal AF episodes using gradient-boosted decision trees (GBDT), an interpretable machine learning technique. We labeled 176 paroxysmal AF onsets from 88 patients in our unselected Holter recordings database containing paroxysmal AF episodes. Raw ECG signals were delineated using a wavelet-based signal processing technique. A total of 44 ECG features related to interval and wave durations and amplitude were selected and the GBDT model was trained with a Bayesian hyperparameters selection for various windows. The dataset was split into two parts at the patient level, meaning that the recordings from each patient were only present in either the train or test set, but not both. We used 80% on the database for the training and the remaining 20% for the test of the trained model. The model was evaluated using 5-fold cross-validation. Main results. The mean age of the patients was 75.9 ± 11.9 (range 50–99), the number of episodes per patient was 2.3 ± 2.2 (range 1–11), and CHA2DS2-VASc score was 2.9 ± 1.7 (range 1–9). For the detection of AF, we obtained an area under the receiver operating curve (AUROC) of 0.99 (CI 95% 0.98–0.99) and an accuracy of 95% using a 30 s window. Features related to RR intervals were the most influential, followed by those on QT intervals. For the AF onset forecast, we obtained an AUROC of 0.739 (0.712–0.766) and an accuracy of 74% using a 120s window. R wave amplitude and QT dynamicity as assessed by Spearman’s correlation of the QT-RR slope were the best predictors. Significance. The QT dynamicity can be used to accurately predict the onset of AF episodes. Ventricular repolarization, as assessed by QT dynamicity, adds information that allows for better short time prediction of AF onset, compared to relying only on RR intervals and heart rate variability. Communication between the ventricles and atria is mediated by the autonomic nervous system (ANS). The variations in intraventricular conduction and ventricular repolarization changes resulting from the influence of the ANS play a role in the initiation of AF.

Funder

Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3