Improved T-wave detection in electrocardiogram signals based non-stationary wavelet transform and QRS complex cancellation with kurtosis analysis

Author:

Sharma NeenuORCID,Sunkaria Ramesh Kumar

Abstract

Abstract Objective. The T-wave in electrocardiogram (ECG) signal has the potential to enumerate various cardiac dysfunctions in the cardiovascular system. The primary objective of this research is to develop an efficient method for detecting T-waves in ECG signals, with potential applications in clinical diagnosis and continuous patient monitoring. Approach. In this work, we propose a novel algorithm for T-wave peak detection, which relies on a non-decimated stationary wavelet transform method (NSWT) and involves the cancellation of the QRS complex by utilizing its local extrema. The proposed scheme contains three stages: firstly, the technique is pre-processed using a two-stage median filter and Savitzky–Golay (SG) filter to remove the various artifacts from the ECG signal. Secondly, the NSWT technique is implemented using the bior 4.4 mother wavelet without downsampling, employing 24 scale analysis, and involves the cancellation of QRS-complex using its local positions. After that, Sauvola technique is used to estimate the baseline and remove the P-wave peaks to enhance T-peaks for accurate detection in the ECG signal. Additionally, the moving average window and adaptive thresholding are employed to enhance and identify the location of the T-wave peaks. Thirdly, false positive T-peaks are corrected using the kurtosis coefficients method. Main results. The robustness and efficiency of the proposed technique have been corroborated by the QT database (QTDB). The results are also validated on a self-recorded database. In QTDB database, the sensitivity of 98.20%, positive predictivity of 99.82%, accuracy of 98.04%, and detection error rate of 1.95% have been achieved. The self-recorded dataset attains a sensitivity, positive predictivity, accuracy, and detection error rate of 99.94%, 99.96%, 99.90%, and 0.09% respectively. Significance. A T-wave peak detection based on NSWT and QRS complex cancellation, along with kurtosis analysis technique, demonstrates superior performance and enhanced detection accuracy compared to state-of-the-art techniques.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3