Quantitative signal quality assessment for large-scale continuous scalp electroencephalography from a big data perspective

Author:

Zhao LinglingORCID,Zhang Yufan,Yu Xue,Wu Hanxi,Wang Lei,Li Fali,Duan Mingjun,Lai Yongxiu,Liu Tiejun,Dong Li,Yao DezhongORCID

Abstract

Abstract Objective. Despite electroencephalography (EEG) being a widely used neuroimaging technique with an excellent temporal resolution, in practice, the signals are heavily contaminated by artifacts masking responses of interest in an experiment. It is thus essential to guarantee a prompt and effective detection of artifacts that provides quantitative quality assessment (QA) on raw EEG data. This type of pipeline is crucial for large-scale EEG studies. However, current EEG QA studies are still limited. Approach. In this study, combined from a big data perspective, we therefore describe a quantitative signal quality assessment pipeline, a stable and general threshold-based QA pipeline that automatically integrates artifact detection and new QA measures to assess continuous resting-state raw EEG data. One simulation dataset and two resting-state EEG datasets from 42 healthy subjects and 983 clinical patients were utilized to calibrate the QA pipeline. Main Results. The results demonstrate that (1) the QA indices selected are sensitive: they almost strictly and linearly decrease as the noise level increases; (2) stable, replicable QA thresholds are valid for other experimental and clinical EEG datasets; and (3) use of the QA pipeline on these datasets reveals that high-frequency noises are the most common noises in EEG practice. The QA pipeline is also deployed in the WeBrain cloud platform (https://webrain.uestc.edu.cn/, the Chinese EEG Brain Consortium portal). Significance. These findings suggest that the proposed QA pipeline may be a stable and promising approach for quantitative EEG signal quality assessment in large-scale EEG studies.

Funder

the CAMS Innovation Fund for Medical Sciences

the Sichuan Science and Technology Program

the ‘111’ project

the National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3