Abstract
Abstract
The development of electrooculography (EOG)-based human-computer interface systems is generally based on the processing of the commonly referred to horizontal and vertical bipolar EOG channels, which are computed from a horizontally-aligned and another vertically-aligned pair of electrodes, respectively. Horizontal (vertical) target displacements are assumed to result in changes in the horizontal (vertical) EOG channel only, and any cross-talk between the bipolar channels is often neglected or incorrectly attributed solely to electrode misalignment with respect to the ocular rotation axes. Objective. The aim of this work is to demonstrate that such cross-talk is intrinsic to the geometric relationship between the orientation of the verging ocular globes and the planar displacement of the gaze target with respect to the primary gaze position. Approach. Since it is difficult to record actual EOG data with electrodes which are perfectly-aligned with the ocular rotation axes, this is studied by simulating the EOG potential values for various horizontally- and vertically-displacing targets using a dipole model of the eye. Main results. We show that cross-talk between the horizontal and vertical bipolar EOG channels is manifested even if the electrodes are aligned with the ocular rotation axes. Specifically, for a horizontally- (vertically-)displaced target, while the monopolar EOG signals obtained from the horizontally- (vertically-)aligned electrodes exhibit an expected predominant potential displacement, a smaller displacement is also exhibited in the monopolar EOG signals obtained from the vertically- (horizontally-)aligned electrodes. These unexpected displacements in the vertically- (horizontally-)aligned monopolar channels may have different magnitudes, resulting in an effective potential displacement in the vertical (horizontal) bipolar EOG channel. Significance. This is significant as it shows that, unlike in many works published so far for EOG-based ocular pose estimation, it is not sufficient to only use the horizontal (vertical) bipolar EOG channel to estimate the horizontal (vertical) displacement of the ocular pose.
Funder
Malta Council for Science and Technology
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Reference13 articles.
1. EOG-based eye movement detection and gaze estimation for an asynchronous virtual keyboard;Barbara;Biomed. Signal Process Control,2019a
2. EOG-based gaze angle estimation using a battery model of the eye;Barbara,2019b
3. It’s in your eyes - towards context-awareness and mobile HCI using wearable EOG goggles;Bulling,2008
4. Removing the interdependency between horizontal and vertical eye-movement components in electrooculograms;Chang;Sensors,2016
5. Untersuchungen über thierische elektricität;Du Bois-Reymond,1884
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献