Advanced automatic detection of fetal body movements from multichannel magnetocardiographic signals

Author:

Schmidt A,Witte R,Swiderski L,Zöllkau J,Schneider U,Hoyer D

Abstract

Abstract Objective: Both heart rate (HR) monitoring and detection and description of fetal movements provide essential information of the integrity of in utero development and fetal wellbeing. Our previously described method to identify movements from multichannel magnetocardiographic (MCG) recordings lacks of reliability in some cases. This work is aimed at the improvement of fetal movement detection by means of an advanced signal processing and validation strategy. Approach: The previously proposed methodology of fetal body movement detection from MCG recordings using single space angle (SSA), min–max amplitude (MMA) and a measure of the overall signal strength across (RSS) was extended by moving correlation coefficient (MCC). The methodology was developed with respect to the discrimination between active and quiet sleep, validated by testing its coupling with HR accelerations in a total of 137 recordings lasting 30 min from 98 fetuses aged 34–38 weeks of gestation (WGA) of normal pregnancy. Main results: The developed algorithm improves the reliable automatic detection of fetal body movements independent of the fetal sleep states and their changes in the individual MCG recordings. In the fetuses aged 34–38 WGA 94% of 15  ×  15 HR accelerations were coupled with detected movements. The visual inspection of the movement graphs of 30 fetuses aged 20–32 WGA supports the transferability of the movement detector to this age. In four subjects MCG-based movement detection and maternal report on percepted fetal movements were consistent. Significance: The presented methodology allows the parallel automatic acquisition of precise fetal heart rate variability (HRV) indices based on subsequent beat intervals and of fetal body movements from MCG recordings during late 2nd and 3rd trimester. Potential advantages of parallel monitoring of fetal HRV and movements using MCG compared to established ultrasound technology should be investigated in subsequent studies with respect to the identification of fetuses at risk.

Funder

Deutsche Forschungsgemeinschaft

Interdisciplinary Centre for Clinical Research of the University Hospital Jena

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3