Abstract
Abstract
Objective. Detecting atrial fibrillation (AF) using electrocardiogram (ECG) recordings from wearable devices has been challenging due to factors such as low signal-to-noise ratio and the use of only one lead. The use of deep learning has become a popular approach to tackle this task. However, it has been observed that current methods based on deep neural networks tend to favor raw signals as input, disregarding the valuable clinical experience in ECG diagnosis. Approach. In this study, we proposed a novel feature extraction method that generates a pseudo QRS complex signal and a pseudo T, P wave signal for each raw ECG signal using a temporal mask built upon R peak detection. Then a novel dilated residual neural network was trained on the decomposed signal. Main results. We evaluated the performance of our method on the dataset of PhysioNet/CinC 2017 Challenge, achieving an average
F
1
¯
score of 0.843. The method was further tested on MIT-BIH Atrial Fibrillation Database, and an average
F
1
¯
score of 0.984 was obtained. Significance. Our proposed ECG signal decomposition technique introduces simple and reliable domain knowledge into deep neural networks, and the dilated residual network provides large and flexible receptive fields, thereby enhancing the performance in the detection of AF. Our method can be extended to many other tasks involving ECG signals.
Funder
Shandong Provincial Natural Science Foundation
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献