Beltrami-net: domain-independent deep D-bar learning for absolute imaging with electrical impedance tomography (a-EIT)

Author:

Hamilton S JORCID,Hänninen A,Hauptmann AORCID,Kolehmainen V

Abstract

Abstract Objective: To develop, and demonstrate the feasibility of, a novel image reconstruction method for absolute electrical impedance tomography (a-EIT) that pairs deep learning techniques with real-time robust D-bar methods and examine the influence of prior information on the reconstruction. Approach: A D-bar method is paired with a trained convolutional neural network (CNN) as a post-processing step. Training data is simulated for the network using no knowledge of the boundary shape by using an associated nonphysical Beltrami equation rather than simulating the traditional current and voltage data specific to a given domain. This allows the training data to be boundary shape independent. The method is tested on experimental data from two EIT systems (ACT4 and KIT4) with separate training sets of varying prior information. Main results: Post-processing the D-bar images with a CNN produces significant improvements in image quality measured by structural SIMilarity indices (SSIMs) as well as relative and image errors. Significance: This work demonstrates that more general networks can be trained without being specific about boundary shape, a key challenge in EIT image reconstruction. The work is promising for future studies involving databases of anatomical atlases.

Funder

Suomen Akatemia

National Institute of Biomedical Imaging and Bioengineering

Engineering and Physical Sciences Research Council

Jane ja Aatos Erkon Säätiö

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference43 articles.

1. Solving ill-posed inverse problems using iterative deep neural networks;Adler;Inverse Problems,2017

2. A d-bar algorithm with a priori information for 2-dimensional electrical impedance tomography;Alsaker;SIAM J. Imaging Sci.,2016

3. Dynamic optimized priors for d-bar reconstructions of human ventilation using electrical impedance tomography;Alsaker;J. Comput. Appl. Math.,2018

4. Deep learning for photoacoustic tomography from sparse data;Antholzer;Inverse Problems Sci. Eng.,2018

5. On instabilities of deep learning in image reconstruction-does ai come at a cost?;Antun,2019

Cited by 51 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3