Detection of fetal arrhythmias in non-invasive fetal ECG recordings using data-driven entropy profiling

Author:

Keenan EmersonORCID,Karmakar ChandanORCID,Udhayakumar Radhagayathri K,Brownfoot Fiona CORCID,Lakhno IgorORCID,Shulgin Vyacheslav,Behar Joachim AORCID,Palaniswami MarimuthuORCID

Abstract

Abstract Objective. Fetal arrhythmias are a life-threatening disorder occurring in up to 2% of pregnancies. If identified, many fetal arrhythmias can be effectively treated using anti-arrhythmic therapies. In this paper, we present a novel method of detecting fetal arrhythmias in short length non-invasive fetal electrocardiography (NI-FECG) recordings. Approach. Our method consists of extracting a fetal heart rate time series from each NI-FECG recording and computing an entropy profile using a data-driven range of the entropy tolerance parameter r. To validate our approach, we apply our entropy profiling method to a large clinical data set of 318 NI-FECG recordings. Main Results. We demonstrate that our method (TotalSampEn) provides strong performance for classifying arrhythmic fetuses (AUC of 0.83) and outperforms entropy measures such as SampEn (AUC of 0.68) and FuzzyEn (AUC of 0.72). We also find that NI-FECG recordings incorrectly classified using the investigated entropy measures have significantly lower signal quality, and that excluding recordings of low signal quality (13.5% of recordings) increases the classification performance of TotalSampEn (AUC of 0.90). Significance. The superior performance of our approach enables automated detection of fetal arrhythmias and warrants further investigation in a prospective clinical trial.

Funder

National Health and Medical Research Council

Norman Beischer Medical Research Foundation

Australian Research Council

University of Melbourne

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hybrid deep learning methodology for fetal cardiac disease prediction;2024 10th International Conference on Communication and Signal Processing (ICCSP);2024-04-12

2. Classification of Fetal Cardiac Arrhythmia Using Heart Rate Variability and Machine Learning;2024 5th International Conference on Advancements in Computational Sciences (ICACS);2024-02-19

3. Editorial: Emerging researchers in frontiers in pharmacology: obstetric and pediatric pharmacology 2022;Frontiers in Pharmacology;2023-05-25

4. Integrated S-Transform-Based Learning System for Detection of Arrhythmic Fetus;IEEE Transactions on Instrumentation and Measurement;2023

5. Automatic Detection of Fetal QRS Complex using Time-Frequency Image Based Features and Deep Learning Architecture;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3