A novel non-contact heart rate measurement method based on EEMD combined with FastICA

Author:

Shi Yingli,Qiu Jian,Peng Li,Han Peng,Luo Kaiqing,Liu DongmeiORCID

Abstract

Abstract Objective. The imaging photoplethysmography (IPPG), which is applied to heart rate measurement, is susceptible to interference caused by illumination variations during photography. To improve the accuracy, robustness, and real-time performance of IPPG, a new method combined with modified ensemble empirical mode decomposition (EEMD) and fast independent component analysis (FastICA) was proposed. Approach. On the modified EEMD, to reduce the error caused by the residual white noise of the algorithm, it was characterized by recurrently updating zero-mean white noise for ensemble averaging based on the standard deviation of the input signal. On the modified FastICA, its constructed nonlinear function was superseded by Huber’s approximation function to improve the robustness and running speed. Main results. Comparison experiments were conducted between the MAHNOB-HCI database and own collected data. In the hybrid natural light and computer screen light scenario, the mean absolute error (MAE) of heart rate amounted to 0.93 beats per minute and the correlation coefficient r reached 0.85. In the experiments of MAHNOB-HCI database, the MAE amounted to 6.03 beats per minute and the correlation coefficient r reached 0.75. Furthermore, the modified method decreased the running time by approximately ten times compared to the original algorithms. Significance. Various experimental results demonstrated that the proposed method significantly improves the accuracy, timeliness, and interference resistance.

Funder

Qingyuan Institute of Science and Technology Innovation, South China Normal University

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3