Hidden Markov model in nonnegative matrix factorization for fetal heart rate estimation using physiological priors

Author:

Reséndiz Rojas Mariel,Fontecave-Jallon JulieORCID,Rivet BertrandORCID

Abstract

Abstract Objective. Fetal heart rate (fHR) analysis remains the most common technique for detecting fetal distress when monitoring the fetal well-being during labor. If cardiotocography (CTG) is nowadays the non-invasive clinical reference technique for fHR measurement, it suffers from several drawbacks, hence an increasing interest towards alternative technologies, especially around abdominal ECG (aECG). Approach. An original solution, using a single abdominal lead, was recently proposed to address both the feasibility in clinical routine and the challenging detection of temporal events when facing interfered signals from real life conditions. Based on a specification of the non-negative matrix factorization (NMF) algorithm, it exploits the semi-periodicity of fetal electrocardiogram (fECG) for fHR estimation. However, this method assumes temporal independence and therefore does not consider the continuity property of fHR values. It is thus proposed to add to the NMF framework a hidden Markov model (HMM) to include physiological information about fHR temporal evolution. Under a statistical setting, constraints have been added by accommodating regularization terms through Bayesian priors. Main results. The proposed method is evaluated on 23 real aECG signals from a new clinical database, according to CTG reference, and compared with the original NMF-only algorithm. The new proposed method improves performance, with an agreement with CTG increasing from 71% to 80%. Significance. This highlights the interest of a better modelization of the fHR characteristics for a more robust estimation.

Funder

Agence Nationale de la Recherche

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference42 articles.

1. Noninvasive fetal electrocardiography: i. Pan- tompkins’ algorithm adaptation to fetal R-peak identification;Agostinelli;Open Biomed. Eng. J.,2017

2. Intérêt et indications des modes de surveillance du rythme cardiaque foetal au cours de l’accouchement normal;J. de Gynécol. Obstétrique et Biol. de la Reproduction,2003

3. Robust fetal ECG extraction and detection from abdominal leads;Andreotti;Physiol. Meas.,2014

4. Maternal signal estimation by kalman filtering and template adaptation for fetal heart rate extraction;Andreotti,2013

5. FIGO consensus guidelines on intrapartum fetal monitoring: Cardiotocography;Ayres-de Campos;Int. J. Gynecol. Obstetrics,2015

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3