Photoplethysmography-based cuffless blood pressure estimation: an image encoding and fusion approach

Author:

Liu YinsongORCID,Yu Junsheng,Mou Hanlin

Abstract

Abstract Objective. Photoplethysmography (PPG) is a promising wearable technology that detects volumetric changes in microcirculation using a light source and a sensor on the skin’s surface. PPG has been shown to be useful for non-invasive blood pressure (BP) measurement. Deep learning-based BP measurements are now gaining popularity. However, almost all methods focus on 1D PPG. We aimed to design an end-to-end approach for estimating BP using image encodings from a 2D perspective. Approach. In this paper, we present a BP estimation approach based on an image encoding and fusion (BP-IEF) technique. We convert the PPG into five image encodings and use them as input. The proposed BP-IEF consists of two parts: an encoder and a decoder. In addition, three kinds of well-known neural networks are taken as the fundamental architecture of the encoder. The decoder is a hybrid architecture that consists of convolutional and fully connected layers, which are used to fuse features from the encoder. Main results. The performance of the proposed BP-IEF is evaluated on the UCI database in both non-mixed and mixed manners. On the non-mixed dataset, the root mean square error and mean absolute error for systolic BP (SBP) are 13.031 mmHg and 9.187 mmHg respectively, while for diastolic BP (DBP) they are 5.049 mmHg and 3.810 mmHg. On the mixed dataset, the corresponding values for SBP are 4.623 mmHg and 3.058 mmHg, while for DBP the values are 2.350 mmHg and 1.608 mmHg. In addition, both SBP and DBP estimation on the mixed dataset achieved grade A compared to the British Hypertension Society standard. The DBP estimation on the non-mixed dataset also achieved grade A. Significance. The results indicate that the proposed approach has the potential to improve on the current mobile healthcare for cuffless BP measurement.

Funder

BUPT Excellent Ph.D. Students Foundation

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference49 articles.

1. End-to-end BP prediction via fully convolutional networks;Baek;IEEE Access,2019

2. Pearson correlation coefficient;Benesty,2009

3. Visibility graph analysis of intraspinal pressure signal predicts functional outcome in spinal cord injured patients;Chen;J. Neurotrauma,2018

4. Continuous BP monitoring using ecg and finger photoplethysmogram;Chua,2006

5. Visibility graph analysis of economy policy uncertainty indices;Dai;Physica A,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3