Automatic sleep stage classification based on a two-channel electrooculogram and one-channel electromyogram

Author:

Li YanjunORCID,Xu Zhi,Zhang Yu,Cao Zhongping,Chen Hua

Abstract

Abstract Objective. Sleep monitoring by polysomnography (PSG) severely degrades sleep quality. In order to reduce the load of sleep monitoring, an approach to automatic sleep stage classification without an electroencephalogram (EEG) was proposed. Approach. A total of 124 records from the public dataset ISRUC-Sleep incorporating American Academy of Sleep Medicine (AASM) standards were used: 10 records were from the healthy group while the others were from sleep disorder groups. The 124 records were collected from 116 subjects (eight subjects had two records each, the others had one record each) with ages ranging from 20 to 85 years. A total of 108 features were extracted from the two-channel electrooculograms (EOGs) and six features were extracted from the one-channel electromyogram (EMG). A novel ‘quasi-normalization’ method was proposed and used for feature normalization. Then the random forest algorithm was used to classify five stages, including wakefulness, rapid eye movement sleep, N1 sleep, N2 sleep and N3 sleep. Main results. Using 114 normalized features from the combination of EOG (108 features) and EMG (6 features) data, Cohen’s kappa coefficient was 0.749 and the accuracy was 80.8% by leave-one-out cross-validation. As a reference for AASM standards using a computer-assisted method, Cohen’s kappa coefficient was 0.801 and the accuracy was 84.7% for the same dataset based on 438 normalized features from a combination of EEG (324 features), EOG (108 features) and EMG (6 features) data. Significance. A combination of EOG and EMG can reduce the load of sleep monitoring, and achieves comparable performance to the ‘gold standard’ signals of EEG, EOG and EMG for sleep stage classification.

Funder

State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3