A learnable front-end based efficient channel attention network for heart sound classification

Author:

Liu Aolei,Zhang Sunjie,Wang Zhe,Tang Yiheng,Zhang Xiaoli,Wang Yongxiong

Abstract

Abstract Objective. To enhance the accuracy of heart sound classification, this study aims to overcome the limitations of common models which rely on handcrafted feature extraction. These traditional methods may distort or discard crucial pathological information within heart sounds due to their requirement of tedious parameter settings. Approach. We propose a learnable front-end based Efficient Channel Attention Network (ECA-Net) for heart sound classification. This novel approach optimizes the transformation of waveform-to-spectrogram, enabling adaptive feature extraction from heart sound signals without domain knowledge. The features are subsequently fed into an ECA-Net based convolutional recurrent neural network, which emphasizes informative features and suppresses irrelevant information. To address data imbalance, Focal loss is employed in our model. Main results. Using the well-known public PhysioNet challenge 2016 dataset, our method achieved a classification accuracy of 97.77%, outperforming the majority of previous studies and closely rivaling the best model with a difference of just 0.57%. Significance. The learnable front-end facilitates end-to-end training by replacing the conventional heart sound feature extraction module. This provides a novel and efficient approach for heart sound classification research and applications, enhancing the practical utility of end-to-end models in this field.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference47 articles.

1. Cardiac auscultation: an essential clinical skill in decline;Alam;Br. J. Cardiol.,2010

2. Detection of cardiac abnormality from PCG signal using LMS based least square SVM classifier;Ari;Expert Syst. Appl.,2010

3. Listen2yourheart: a self-supervised approach for detecting murmur in heart-beat sounds;Ballas,2022

4. The effect of signal duration on the classification of heart sounds: a deep learning approach;Bao;Sens.,2022

5. A study of time-frequency features for CNN-based automatic heart sound classification for pathology detection;Bozkurt;Comput. Biol. Med.,2018

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3