Interactive slide selection algorithm and machine learning in psychophysiological memory testing

Author:

Randjelovic VladimirORCID

Abstract

Abstract Objective. To present a new type of concealed information test (CIT) that implements the interactive slide selection (ISS) algorithm and compare its effectiveness with a standard CIT (sCIT). Approach. The ISS algorithm presents slides interactively, based on the analysis of electrodermal activity, while sCIT presents slides in a predefined, sequential order. The algorithm automatically selects irrelevant, relevant, and control slides and presents them at the moment which is physiologically most suitable for electrodermal response detection. To compare the ISS-based CIT (issCIT) and sCIT, two objects, a bag, and a wallet, were presented to 64 participants, 32 of whomwere analyzed with sCIT, and another 32 with issCIT. Main results. The results show that ISS had significantly better true/false predictions (Fisher’s exact test, p < 0.01). Also, the number of false positives (FPs) was significantly lower in the issCIT group in comparison with sCIT (Fisher’s exact test, p < 0.001). Machine learning (ML) classifiers improved precision from 49% to 79% in the sCIT group (McNemar’s test, p < 0.05), and from 85% to 100% in the issCIT group (McNemar’s test, p < 0.05). The testing time in the issCIT group ranged between 42 and 107 s, while the average was 53 s. In the sCIT group, the testing time was always 330 s. Significance. Under the presented experimental settings, the ISS algorithm obtained significantly better classification results compared to sCIT, while the application of the ML algorithms managed to improve the classification results in both groups reaching a precision of 100%. The ISS algorithm allowed for a much shorter testing time compared to sCIT.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3