Inter-patient arrhythmia identification method with RR-intervals and convolutional neural networks

Author:

Zhu Wenliang,Ma Gang,Zheng Lesong,Chen Yuhang,Qiu Lishen,Wang LirongORCID

Abstract

Abstract Objective. The arrhythmia identification method based on the U-net has the potential for fast application. The RR-intervals have been proven to improve the performance of single-heartbeat identification methods. However, because both the heartbeats number and location in the input of the U-net are unfixed, the approach based on the U-net cannot use RR-intervals directly. To solve this problem, we proposed a novel method. The proposed method also can identify heartbeats of four classes, including non-ectopic (N), supraventricular ectopic beat (SVEB), ventricular ectopic beat (VEB), and fusion beat (F). Approach. Our method consists of the pre-processing and the two-stage identification framework. In the pre-processing part, we filtered input signals with a band-pass filter and created the auxiliary waveforms by RR-intervals. In the first stage of the framework, we designed a network to handle input signals and auxiliary waveforms. We proposed a masking operation to separate the input signal into two signals according to the result of the network. The first signal contains heartbeats of SVEB and VEB. The second signal includes heartbeats of N and F. The second stage consists of two networks and can further identify the heartbeats of SVEB, VEB, N, and F from these two signals. Main result. We validated our method on the MIT-BIH arrhythmia database with the inter-patient model. For classes N, SVEB, VEB, and F, our approach achieved F1 scores of 98.26, 68.61, 95.99, and 47.75, respectively. Significance. Our method not only can effectively utilize RR intervals but also can identify multiple arrhythmias.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3