Lung volumes measurement using novel pressure derived method in participants with obstructive, restrictive and healthy lungs

Author:

Zac Jacob,Zac Salomon,Pérez-Padilla Rogelio,Remigio-Luna Arantxa,Guzmán-Boulloud Nicolas,Gochicoa-Rangel Laura,Guzmán-Valderrábano Carlos,Thirión-Romero IreriORCID

Abstract

Abstract Background. Lung volumes can be measured by body plethysmography (BP), by inert gas dilution during a single-breath or multiple breaths and by radiographic methods based on chest roentgenogram or CT scanning. Our objective was to analyze the concordance between several methods including a new pressure-derived method (PDM) in a variety of pulmonary conditions. Methods. We recruited four groups of adult volunteers at the chronic obstructive pulmonary disease and tobacco clinic of a respiratory referral hospital: patients with lung bullae, with obstructive lung diseases, with restrictive lung diseases and healthy controls; all subjects underwent lung volume measurements according to ATS/ERS standards in random order with each method and then CT scanning. Differences among groups were estimated by Kruskal–Wallis tests. Concordance correlation coefficients (CCC) and Bland–Altman plots were performed. Results. Sixty-two patients were studied including 15 with lung bullae, 14 with obstructive lung diseases, 12 with restrictive lung disease and 21 healthy subjects. Highest concordance was obtained between BP and CT scanning (CCC 0.95, mean difference −0.35 l) and the lowest, with TLC-DLCOsb (CCC 0.65, difference −1.05 l). TLC measured by BP had a moderate concordance with the PDM (CCC = 0.91, mean difference −0.19 l). The PDM on the other hand had the lowest intra-test repeatability (2.7%) of all tested methods. Conclusions. Lung volumes measured by BP and CT had high concordance in the scenario of varied pulmonary conditions including lung bullae, restrictive and obstructive diseases. The new PDM device, had low intra-test variability, and was easy to perform, with a reasonable concordance with BP.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3