Recording and quantifying fetal magnetocardiography signals using a flexible array of optically-pumped magnetometers

Author:

Escalona-Vargas Diana,Bolin Elijah H,Lowery Curtis L,Siegel Eric R,Eswaran HariORCID

Abstract

Abstract Objective: Fetal magnetocardiography (fMCG) is a non-invasive biomagnetic technique that provides detailed beat-to-beat fetal heart rate analysis, both in normal rhythm as well as in fetal arrhythmias. New cryogenic-free sensors called optically pumped magnetometers (OPMs) have emerged as a less expensive and more geometrically flexible alternative to traditional Superconducting Quantum Interference Device (SQUID) technology for performing fMCG. The objective of the study was to show the ability of OPMs to record fMCG using flexible geometry while seeking to preserve signal quality, and to quantify fetal heart rate variability (FHRV). Approach: Biomagnetic measurements were performed with OPMs in 24 healthy pregnant women with uncomplicated singleton pregnancies between 28 and 38 weeks gestation (GA). A total of 96 recordings were analyzed from OPM data that was collected using sensors placed in two different maternal configurations over the abdomen. The fMCG signals were extracted and the quality of the recordings were quantified by peak amplitudes and signal-to-noise ratio (SNR). R peaks were used to perform both time and frequency domain FHRV analysis. FHRV measures obtained from OPMs were compared descriptively to the same measures obtained from GA-matched existing SQUID data. Main results: The fMCG derived from OPMs were observed in 21 of the 24 participants. Higher detection rates (85%) of fMCG signals were observed in the data sets recorded at GA >32 weeks. Peak amplitudes and SNR values were similar between two maternal configurations, but peak amplitudes were significantly higher (p = 0.013) in late GA compared to early GA. FHRV indicators were successfully extracted and their values overlapped substantially with those obtained from SQUID recordings. Significance: Taking advantage of the geometric flexibility of the OPMs, we have demonstrated their ability to record and quantify fMCG in different maternal positions as opposed to rigid SQUID configurations.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3