Abstract
Abstract
Objective. The assessment of lung mechanics in horses is nowadays based on invasive methods that may require sedation. The forced oscillation technique (FOT) allows the non-invasive assessment of respiratory mechanics during spontaneous breathing, but current devices are complex, cumbersome, expensive, and difficult to be applied in horses. Approach. We developed a portable FOT device based on a novel approach in which the pressure waveforms are generated by a servo-controlled ducted fan. This new approach allows the design of devices that are more sturdy, compact, and portable compared to already existing approaches. The prototype includes 1) a small microcontroller-based electronic board for controlling the fan and measuring flow and pressure and 2) an optimized data processing algorithm. Main results. This device provides a maximum error of 0.06 cmH2O·s/L and 0.15 cmH2O·s/L in measuring respiratory resistance and reactance during in-vitro validation. A pilot study was also performed on three healthy horses and three horses with severe equine asthma (SEA) and it demonstrated good tolerability and feasibility of the new device. Total respiratory system resistance (R
rs) and reactance (X
rs) significantly differed (p < 0.05) between groups. At 5 Hz, R
rs was 0.66 ± 0.02 cmH2O·s/L and 0.94 ± 0.07 cmH2O·s/L in healthy and in SEA, respectively. X
rs 0.38 ± 0.02 cmH2O·s/L and −0.27 ± 0.05 cmH2O·s/L. Significance. This novel approach for applying FOT allowed the development of a small, affordable, and portable device for the non-invasive evaluation of respiratory mechanics in spontaneously breathing horses, providing a useful new tool for improving veterinary respiratory medicine. Moreover, our results provide supporting evidence of the value of this novel approach for developing portable FOT devices also for applications in humans.
Funder
This work was partially supported by an unrestricted grant from Boehringer Ingelheim Animal Health Italia S.p.A.
Subject
Physiology (medical),Biomedical Engineering,Physiology,Biophysics
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献