Multiscale entropy as a metric of brain maturation in a large cohort of typically developing children born preterm using longitudinal high-density EEG in the first two years of life

Author:

Pelc KarineORCID,Gajewska Aleksandra,Napiórkowski Natan,Dan JonathanORCID,Verhoeven Caroline,Dan BernardORCID

Abstract

Abstract Objective. We aimed to analyze whether complexity of brain electrical activity (EEG) measured by multiscale entropy (MSE) increases with brain maturation during the first two years of life. We also aimed to investigate whether this complexity shows regional differences across the brain, and whether changes in complexity are influenced by extrauterine life experience duration. Approach. We measured MSE of EEG signals recorded longitudinally using a high-density setup (64 or 128 electrodes) in 84 typically developing infants born preterm (<32 weeks’ gestation) from term age to two years. We analyzed the complexity index and maximum value of MSE over increasing age, across brain regions, and in function of extrauterine life duration, and used correlation matrices as a metric of functional connectivity of the cerebral cortex. Main results. We found an increase of strong inter-channel correlation of MSE (R > 0.8) with increasing age. Regional analysis showed significantly increased MSE between 3 and 24 months of corrected age in the posterior and middle regions with respect to the anterior region. We found a weak relationship (adjusted R2 = 0.135) between MSE and extrauterine life duration. Significance. These findings suggest that brain functional connectivity increases with maturation during the first two years of life. EEG complexity shows regional differences with earlier maturation of the visual cortex and brain regions involved in joint attention than of regions involved in cognitive analysis, abstract thought, and social behavior regulation. Finally, our MSE analysis suggested only a weak influence of early extrauterine life experiences (prior to term age) on EEG complexity.

Funder

Fondation Roger de Spoelberch

Elsass Fonden

Fonds Iris Recherche

Fondation JED

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3