Anatomical atlas of the upper part of the human head for electroencephalography and bioimpedance applications

Author:

Moura Fernando SORCID,Beraldo Roberto GORCID,Ferreira Leonardo AORCID,Siltanen SamuliORCID

Abstract

Abstract Objective. The objective of this work is to develop a 4D (3D+T) statistical anatomical atlas of the electrical properties of the upper part of the human head for cerebral electrophysiology and bioimpedance applications. Approach. The atlas was constructed based on 3D magnetic resonance images (MRI) of 107 human individuals and comprises the electrical properties of the main internal structures and can be adjusted for specific electrical frequencies. T1w+T2w MRI images were used to segment the main structures of the head while angiography MRI was used to segment the main arteries. The proposed atlas also comprises a time-varying model of arterial brain circulation, based on the solution of the Navier–Stokes equation in the main arteries and their vascular territories. Main results. High-resolution, multi-frequency and time-varying anatomical atlases of resistivity, conductivity and relative permittivity were created and evaluated using a forward problem solver for EIT. The atlas was successfully used to simulate electrical impedance tomography measurements indicating the necessity of signal-to-noise between 100 and 125 dB to identify vascular changes due to the cardiac cycle, corroborating previous studies. The source code of the atlas and solver are freely available to download. Significance. Volume conductor problems in cerebral electrophysiology and bioimpedance do not have analytical solutions for nontrivial geometries and require a 3D model of the head and its electrical properties for solving the associated PDEs numerically. Ideally, the model should be made with patient-specific information. In clinical practice, this is not always the case and an average head model is often used. Also, the electrical properties of the tissues might not be completely known due to natural variability. Anatomical atlases are important tools for in silico studies on cerebral circulation and electrophysiology that require statistically consistent data, e.g. machine learning, sensitivity analyses, and as a benchmark to test inverse problem solvers.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Suomen Akatemia

Fundação de Amparo à Pesquisa do Estado de São Paulo

Jane ja Aatos Erkon Säätiö

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3