Distribution of regional lung function in upright healthy subjects determined by electrical impedance tomography in two chest examination planes

Author:

Frerichs IORCID,Vogt B,Deuss K,Hennig V,Schädler DORCID,Händel CORCID

Abstract

Abstract Objective. The variation in pulmonary gas content induced by ventilation is not uniformly distributed in the lungs. The aim of our study was to characterize the differences in spatial distribution of ventilation in two transverse sections of the chest using electrical impedance tomography (EIT). Approach. Twenty adult never-smokers, 10 women and 10 men (mean age ± SD, 31 ± 9 years), were examined in a sitting position with the EIT electrodes placed consecutively in a caudal (6th intercostal space) and a cranial (4th intercostal space) chest location. EIT data were acquired during quiet breathing, slow and forced full expiration manoeuvres. Impedance variations representing tidal volume (V T), vital capacity (VC), forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) were calculated at the level of individual image pixels and their spatial distribution was determined using the following EIT measures: the centres of ventilation in ventrodorsal (CoVvd) and right-to-left direction (CoVrl), the dorsal and right fractions of ventilation, the coefficient of variation (CV) and the global inhomogeneity (GI) index. Main results. The sums of pixel ventilation-related impedance variations reproduced reliably the volumetric dissimilarities among V T, VC, FEV1 and FVC, with no significant differences noted between the two examination planes. Significant differences in ventilation distribution were found between the planes during tidal breathing and slow full expiration, mainly regarding the ventrodorsal direction, with higher values of CoVvd and dorsal fraction of ventilation in the caudal plane (p < 0.01). No significant differences in the spatial distribution of FEV1 and FVC were detected between the examination planes. Significance. The spatial distribution of ventilation differed between the two examination planes only during the relaxed (quiet breathing and slow VC manoeuvre) but not during the forced ventilation. This effect is attributable to the differences in thoracoabdominal mechanics between these types of ventilation.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3