A supervised machine learning semantic segmentation approach for detecting artifacts in plethysmography signals from wearables

Author:

Guo Zhicheng,Ding Cheng,Hu XiaoORCID,Rudin Cynthia

Abstract

Abstract Objective. Wearable devices equipped with plethysmography (PPG) sensors provided a low-cost, long-term solution to early diagnosis and continuous screening of heart conditions. However PPG signals collected from such devices often suffer from corruption caused by artifacts. The objective of this study is to develop an effective supervised algorithm to locate the regions of artifacts within PPG signals. Approach. We treat artifact detection as a 1D segmentation problem. We solve it via a novel combination of an active-contour-based loss and an adapted U-Net architecture. The proposed algorithm was trained on the PPG DaLiA training set, and further evaluated on the PPG DaLiA testing set, WESAD dataset and TROIKA dataset. Main results. We evaluated with the DICE score, a well-established metric for segmentation accuracy evaluation in the field of computer vision. The proposed method outperforms baseline methods on all three datasets by a large margin (≈7 percentage points above the next best method). On the PPG DaLiA testing set, WESAD dataset and TROIKA dataset, the proposed method achieved 0.8734 ± 0.0018, 0.9114 ± 0.0033 and 0.8050 ± 0.0116 respectively. The next best method only achieved 0.8068 ± 0.0014, 0.8446 ± 0.0013 and 0.7247 ± 0.0050. Significance. The proposed method is able to pinpoint exact locations of artifacts with high precision; in the past, we had only a binary classification of whether a PPG signal has good or poor quality. This more nuanced information will be critical to further inform the design of algorithms to detect cardiac arrhythmia.

Publisher

IOP Publishing

Subject

Physiology (medical),Biomedical Engineering,Physiology,Biophysics

Reference55 articles.

1. Photoplethysmography assessments in cardiovascular disease;Allen;Meas. Control,2006

2. Evaluation of different machine learning models for photoplethysmogram signal artifact detection;Athaya,2020

3. Smartwatch Based Atrial Fibrillation Detection from Photoplethysmography Signals;Bashar,2019

4. A review on wearable photoplethysmography sensors and their potential future applications in health care;Castaneda;Int. J. Biosens. Bioelectron.,2018

5. Learning active contour models for medical image segmentation;Chen,2019

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3