Balancing hydrophobic and electrostatic interactions in thermosensitive polyplexes for nucleic acid delivery

Author:

Fliervoet Lies A L,van Nostrum Cornelus F,Hennink Wim E,Vermonden TinaORCID

Abstract

Abstract For the design of new polymeric-based drug delivery systems, understanding how multiple functionalities in the polymer structure are influencing each other in particle formation is important. Therefore in this study, the balance between hydrophobic and electrostatic interactions has been investigated for thermosensitive plasmid DNA (pDNA)-loaded polyplexes. NPD triblock copolymers consisting of a thermosensitive poly(N-isopropylacrylamide) (PNIPAM, N), a hydrophilic poly(ethylene glycol) (PEG, P) and a cationic poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA, D) block with different block lengths were prepared using a hetero-functional PEG macroinitiator. Cloud points of the thermosensitive polymers in HBS buffer (20 mM HEPES, 150 mM NaCl, pH 7.4) were determined by light scattering and ranged between 33 °C and 34 °C for the different polymers. The binding and condensation properties of these thermosensitive polymers and pDNA were studied taking non-thermosensitive PD polymers as controls. The size, surface charge, and stability of the formed colloidal particles (‘polyplexes’) were studied as a function of polymer block lengths, N/P charge ratio, and temperature. The NPD polymers were able to self-assemble into polyplex nanostructures with hydrodynamic sizes ranging between 150 and 205 nm at room temperature in HBS buffer as determined by dynamic light scattering. Polyplexes prepared with a low N/P charge ratio of 1 aggregated upon heating to 37 °C, which was not observed at higher N/P charge ratios. When the length of the cationic D block was relatively long compared to the thermosensitive N block, stable polyplexes were formed at all N/P ratios and elevated temperatures. 1H-NMR studies, static light scattering and ζ-potential measurements further supported the stability of these polyplexes at 37 °C. Finally, the presence of thermosensitive blocks in NPD-based polyplexes resulted in better cytocompatibility compared to PD-based polyplexes with similar efficiencies of delivering its cargo into HeLa cells.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Publisher

IOP Publishing

Subject

Surfaces, Coatings and Films,Materials Science (miscellaneous),Biomaterials

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3