Improved osteogenesis of human adipose-derived stromal cells on hydroxyapatite-mineralized graphene film

Author:

Park Seong Chae,Yang Woo Sub,Ahn Ji Yeon,Park Jong Bo,Lee Jong-Hwan,Jung Youngjin,Kim Hwa RangORCID,Kim Ji Yoon,Lim Jeong Mook,Hong Byung HeeORCID

Abstract

Abstract This study investigated whether hydroxyapatite (HAp)-mineralized graphene (GR) film could support osteogenic differentiation of human adipose-derived, stromal cell (hASCs) in vitro. GR was produced by a chemical vapor deposition (CVD) method and the physical and chemical characteristics of the GR film, which was functionalized with HAp mineralization following ultraviolet-ozone (GR_UVO) treatment, were subsequently validated. Results of scanning electron microscopy, x-ray photoelectron spectroscopy and Raman spectroscopy showed GR_UVO for 5 min yielded applicable GR coverage (97.98 ± 0.85%), conversion of chemical composition ratio (29.78% C–O, 18.34% C=O and 8.49% O–C=O) and degree of oxidation, (I 2D/I G ratios 2.22) with maximal density of HAp-GR layer. In vitro-cell proliferation, viability and adhesion of hASCs after being cultured on HAp-mineralized, GR-coated glass (HAp/GR) with the optimized GR_UVO treatment (5 min) demonstrated a significant increment of proliferation (1.56 ± 0.1 vs 1–1.13 ± 0.1, p< 0.05) without changing in viability (94.83 ± 1% to 95.3 ± 1.6%, p= 0.9651) compared with the control (intact glass). There were no differences in F-actin and vinculin on day 1 (p= 0.1422 and 0.5025, respectively) and on day 4 (p= 0.3787 and 0.9208) of culture. Osteogenic differentiation of hASCs was significantly improved on the HAp/GR with increasing of osteogenesis-related genes (Runx2 and Osteocalcin). The hASCs culture with the HAp/GR glass promoted phospho-SMAD1/5/9 and SMAD4 expression with increased patterns of BMP/Smad signal-related genes, regardless of differentiation induction or not. These results demonstrated that HAp-mineralized GR film prepared by CVD method and optimal ultraviolet treatment promoted osteogenic differentiation of hASCs, which BMP/Smad signaling was involved.

Funder

the Bio-industry Technology Development Program

Biographene company

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3