The morphology of doubly-clamped graphene nanoribbons

Author:

Brand ChristianORCID,Monazam Mohammad R AORCID,Mangler Clemens,Lilach Yigal,Cheshnovsky Ori,Arndt MarkusORCID,Kotakoski JaniORCID

Abstract

Abstract Understanding the response of micro/nano-patterned graphene to mechanical forces is instrumental for applications such as advanced graphene origami and kirigami. Here, we analyze free-standing nanoribbons milled into single-layer graphene by focused ion beam processing. Using transmission electron microscopy, we show that the length L of the structures determines their morphology. Nanoribbons with L below 300 nm remain mainly flat, whereas longer ribbons exhibit uni-axial crumpling or spontaneous scrolling, a trend that is well reproduced by molecular dynamics simulations. We measure the strain of the ribbons as well as their crystallinity by recording nanometer-resolved convergent beam electron diffraction maps, and show that the beam tails of the focused ion beam cause significant amorphization of the structures adjacent to the cuts. The expansive or compressive strain in the structures remains below 4%. Our measurements provide experimental constraints for the stability of free-standing graphene structures with respect to their geometry, providing guidelines for future applications of patterned graphene.

Funder

Austrian Science Fund

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3