Abstract
Abstract
We employ a four-band continuum model to study the transport and confinement in an n-p-n junction in bilayer chiral borophene for both the identical- and opposite-chirality configurations. We demonstrate the existence of topological states in a domain wall between domains of opposite-chirality bilayer chiral borophene with reversed layer stacking. An interlayer bias modifies the conductance of the identical-chirality configuration but not that of the opposite-chirality configuration, and it induces a layer localization of the bound and topological states. Our findings suggest paths toward utilization of the layer degree of freedom in bilayer chiral borophene in future electronic devices.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献