Quantum dot-like plasmonic modes in twisted bilayer graphene supercells

Author:

Westerhout TomORCID,Katsnelson Mikhail IORCID,Rösner MalteORCID

Abstract

Abstract We derive a material-realistic real-space many-body Hamiltonian for twisted bilayer graphene from first principles, including both single-particle hopping terms for p z electrons and their long-range Coulomb interaction. By disentangling low- and high-energy subspaces of the electronic dispersion, we are able to utilize state-of-the-art constrained random phase approximation calculations to reliably describe the non-local background screening from the high-energy s, p x , and p y electron states which we find to be independent of the bilayer stacking and thus of the twisting angle. The twist-dependent low-energy screening from p z states is subsequently added to obtain a full screening model. We use this modeling scheme to study plasmons in electron-doped twisted bilayer graphene supercells. We find that the finite system size yields discretized plasmonic levels, which are controlled by the system size, doping level, and twisting angle. This tunability together with atomic-like charge distributions of some of the excitations renders these plasmonic excitations remarkably similar to the electronic states in electronic quantum dots. To emphasize this analogy in the following we refer to these supercells as plasmonic quantum dots. Based on a careful comparison to pristine AB-stacked bilayer graphene plasmons, we show that two kinds of plasmonic excitations arise, which differ in their layer polarization. Depending on this layer polarization the resulting plasmonic quantum dot states are either significantly or barely dependent on the twisting angle. Due to their tunability and their coupling to light, these plasmonic quantum dots form a versatile and promising platform for tailored light-matter interactions.

Funder

European Research Council

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3