Abstract
Abstract
We present simple models to describe the in-plane and the out-of-plane lattice relaxation in twisted bilayer and symmetrically twisted trilayer graphene. Analytical results and series expansions show that for twist angles
θ
>
1.4
∘
, the in-plane atomic displacements lead to pseudomagnetic fields weakly dependent on θ. In symmetrically twisted trilayer graphene, the central layer in-plane relaxation is greatly enhanced. The joint effect of the relaxation-induced pseudoscalar potentials and the associated energy difference between interlayer dimer and non-dimer pairs resulted in a significant electron–hole asymmetry both in twisted bilayer and trilayer graphene.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献