Abstract
Abstract
The growth of monolayer hexagonal boron nitride (h-BN) on Ir(110) through low-pressure chemical vapor deposition is investigated using low energy electron diffraction and scanning tunneling microscopy. We find that the growth of aligned h-BN on Ir(110) requires a growth temperature of 1500 K, whereas lower growth temperatures result in coexistence of aligned h-BN with twisted h-BN. The presence of the h-BN overlayer suppresses the formation of the nano-faceted ridge pattern known from clean Ir(110). Instead, we observe the formation of a
(
1
×
n
)
reconstruction, with n such that the missing rows are in registry with the h-BN/Ir(110) moiré pattern. Our moiré analysis showcases a precise methodology for determining both the moiré periodicity and the h-BN lattice parameter on an fcc(110) surface. Aligned h-BN on Ir(110) is found to be slightly compressed compared to bulk h-BN, with a monolayer lattice parameter of
a
h
−
B
N
=
(
0.2489
±
0.0006
)
nm. The lattice mismatch with the substrate along
1
1
ˉ
0
gives rise to a moiré periodicity of
a
m
=
2.99
±
0.08
nm.
Funder
Deutsche Forschungsgemeinschaft
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献