Precise structure and energy of group 6 transition metal dichalcogenide homo- and heterobilayers in high-symmetry configurations

Author:

Emrem BirkanORCID,Joswig Jan-OleORCID,Heine ThomasORCID

Abstract

Abstract Two-dimensional group 6 transition metal dichalcogenide (2D TMDC) bilayers show various high-symmetry stacking configurations, which have also been observed in extended domains formed in their twisted homo- and heterobilayers. The interlayer energy varies for these stacking configurations, and the energy differences determine the relative size of the stacking domains. Therefore, the precise prediction of the composition- and stacking-dependent interlayer energy is crucial to model the domain structure of 2D TMDCs in their twisted bilayer homo- and heterostructures. For the validation of approximate methods that are necessary to tackle these systems encompassing thousands of atoms precise reference data is still lacking. Here, we employ the random phase approximation (RPA) on previously validated SCAN-rVV10 geometries to obtain interaction energies of state-of-the-art accuracy on the six high-symmetry stacking configurations ( H h h , H h M , H h X , R h h , R h M , and R h X ) of MX2 (M = Mo, W; X = S, Se) bilayers and compare them with the dispersion-corrected density-functional theory (DFT) functionals Perdew–Burke–Ernzerhof (PBE)+D3(BJ), PBE-rVV10L, and SCAN-rVV10. We identify SCAN-rVV10 as most reliable DFT variant with an average deviation of 1.2 meV/atom in relative energies from the RPA reference, and a root mean squared error of less than 2 meV/atom for interlayer interaction energies. We find interlayer distances obtained by PBE+D3(BJ) as being too short, with an impact on the electronic structure, resulting in the incorrect prediction of the band gap character in some cases. A further result of this work is the significant lowering of the interlayer energy and increasing of the interlayer distance in the high-energy stacking configurations. These stackings can be accessible via shear strain and promote exfoliation.

Funder

Deutsche Forschungsgemeinschaft

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3