Light emission properties of mechanical exfoliation induced extended defects in hexagonal boron nitride flakes

Author:

Ciampalini G,Blaga C V,Tappy N,Pezzini S,Watanabe KORCID,Taniguchi TORCID,Bianco F,Roddaro SORCID,Fontcuberta I Morral AORCID,Fabbri FORCID

Abstract

Abstract Recently, hexagonal boron nitride (hBN) has become an interesting platform for quantum optics due to its peculiar defect-related luminescence properties. Concomitantly, hBN was established as the ideal insulating support for realizing 2D materials devices, where, on the contrary, defects can affect the device performance. In this work, we study the light emission properties of hBN flakes obtained by mechanical exfoliation with particular focus on extended defects generated in the process. In particular, we tackle different issues related to the light emission in hBN flakes of different thicknesses in the range of hundreds of nanometers, revealing a higher concentration of deep level emission in thinner area of the flake. We recognize the effect of crystal deformation in some areas of the flake with an important blue-shift (130 meV) of the room temperature near band edge emission of hBN and the concurrent presence of a novel emission at 2.36 eV, related to the formation of array of dislocations. We studied the light emission properties by means of cathodoluminescence (CL) and sub-bandgap excitation photoluminescence of thickness steps with different crystallographic orientations, revealing the presence of different concentration of radiative centers. CL mapping allows to detect buried thickness steps, invisible to the scanning electron microscopy and atomic force microscopy morphological analysis.

Funder

SNSF

MEXT, Japan

KAKENHI

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3