Abstract
Abstract
Proximity effects between layered materials trigger a plethora of novel and exotic quantum transport phenomena. Besides, the capability to modulate the nature and strength of proximity effects by changing crystalline and interfacial symmetries offers a vast playground to optimize physical properties of relevance for innovative applications. In this work, we use large-scale first principles calculations to demonstrate that strain and twist-angle strongly vary the spin–orbit coupling (SOC) in graphene/transition metal dichalcogenide heterobilayers. Such a change results in a modulation of the spin relaxation times by up to two orders of magnitude. Additionally, the relative strengths of valley-Zeeman and Rashba SOC can be tailored upon twisting, which can turn the system into an ideal Dirac–Rashba regime or generate transitions between topological states of matter. These results shed new light on the debated variability of SOC and clarify how lattice deformations can be used as a knob to control spin transport. Our outcomes also suggest complex spin transport in polycrystalline materials, due to the random variation of grain orientation, which could reflect in large spatial fluctuations of SOC fields.
Funder
H2020 Marie Skłodowska-Curie Actions
Barcelona Supercomputing Center
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Fundação de Amparo à Pesquisa do Estado de São Paulo
MINECO
H2020 European Institute of Innovation and Technology
Netherlands Sector Plan
CERCA Programme/Generalitat de Catalunya
Partnership for Advanced Computing in Europe AISBL
EC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献