Formation of smoother grain boundaries in 2D materials using high deposition rates during the last stages of growth

Author:

Aarão Reis Fabio D AORCID,Marguet Bastien,Pierre-Louis OlivierORCID

Abstract

Abstract Grain boundary (GB) roughness can affect electronic and mechanical properties of two-dimensional materials. This roughness depends crucially on the growth process by which the two-dimensional material is formed. To investigate the key mechanisms that govern the GB roughening, we have performed kinetic Monte Carlo simulations of a simple model that includes particle attachment, detachment, and diffusion. We have studied the closure of the gap between two flakes during growth, and the subsequent formation of the GB for a broad range of model parameters. The well-known near-equilibrium (attachment-limited) and unstable (diffusion-limited) growth regimes are identified, but we also observe a third regime when the precursor flux is sufficiently high to saturate the gap between the edges with diffusing species. This high deposition rate regime forms GBs with spatially uncorrelated roughness, which quickly relax to smoother configurations. Extrapolating the numerical results (with support from a theoretical approach) to edge lengths and gap widths of some micrometres, we confirm the advantage of this regime to produce GBs with minimal roughness faster than near-equilibrium conditions. This suggests an unexpected route towards efficient growth of two-dimensional materials with smooth GBs.

Funder

Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3