Abstract
Abstract
Single quantum emitters (SQEs) are the basic building blocks for quantum optics and quantum information technology. Strain-induced defects in monolayer transition metal dichalcogenides (TMDs) have been shown to be a promising platform for the generation of SQEs. In particular, achieving optically active and electrically controlled quantum emitters make these materials attractive for applications ranging from quantum communication and optoelectronics to high resolution metrology. Here, we report the spectral photoresponse of monolayer WSe2 upon strain, where we observe a connection between single-photon emission and photocurrent (PC) generation in a p-n device. A strong antibunching in second-order correlation from this localized emitter unambiguously demonstrates the single-photon nature of the emission, whereas the PC is highly dominated by the absorption at such a localized state, showing an exponential dependence with the applied electric field. Furthermore, we can resolve narrow PC peaks with 1.0 meV spectral width.
Funder
European Commission
Austrian Science Fund
Technische Universität Wien
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献