Single-atom doped graphene for hydrogen evolution reactions

Author:

Hu Huimin,Choi Jin-HoORCID

Abstract

Abstract Atomic doping is a widely used technique to modify the electronic properties of two-dimensional materials for various applications. In this study, we investigate the catalytic properties of single-atom doped graphene as electrocatalysts for hydrogen evolution reactions (HERs) using first-principles calculations. We consider several elements, including Al, Ga, In, Si, Ge, Sn, P, As, and Sb, which were interstitially doped into single and double C vacancies in graphene. Our density functional theory calculations show that all the considered doped graphene, except for As-doped graphene, can be highly active for HER, with hydrogen adsorption free energies (ΔG H*) close to the optimal value (ΔG H* = 0), ranging from −0.19 to 0.11 eV. Specifically, ΔG H* of Al, Ga, In, and Ge are much closer to zero when doped in the single vacancy than in the double vacancy. In contrast, ΔG H* of Sb and Sn are much closer to zero in the double vacancy. Si and P have ΔG H* values close to the optimum in both vacancies. Interestingly, the vacancy numbers play a crucial role in forming orbital hybridizations, resulting in distinct electronic distributions for most dopants. As a result, a few doped graphenes show distinctive ferrimagnetic and ferromagnetic orders, which is also an important factor for determining the strength of H adsorption. These findings have important implications for designing graphene-based HER catalysis.

Funder

National Natural Science Foundation of China

NSCC in Tianjin

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3