Review of graphene for the generation, manipulation, and detection of electromagnetic fields from microwave to terahertz

Author:

Katzmarek David AORCID,Pradeepkumar AiswaryaORCID,Ziolkowski Richard WORCID,Iacopi FrancescaORCID

Abstract

AbstractGraphene has attracted considerable attention ever since the discovery of its unprecedented properties, including its extraordinary and tunable electronic and optical properties. In particular, applications within the microwave to terahertz frequency spectrum can benefit from graphene’s high electrical conductivity, mechanical flexibility and robustness, transparency, support of surface-plasmon-polaritons, and the possibility of dynamic tunability with direct current to light sources. This review aims to provide an in-depth analysis of current trends, challenges, and prospects within the research areas of generating, manipulating, and detecting electromagnetic fields using graphene-based devices that operate from microwave to terahertz frequencies. The properties of and models describing graphene are reviewed first, notably those of importance to electromagnetic applications. State-of-the-art graphene-based antennas, such as resonant and leaky-wave antennas, are discussed next. A critical evaluation of the performance and limitations within each particular technology is given. Graphene-based metasurfaces and devices used to manipulate electromagnetic fields, e.g. wavefront engineering, are then examined. Lastly, the state-of-the-art of detecting electromagnetic fields using graphene-based devices is discussed.

Funder

Australian Research Council

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Reference260 articles.

1. Electric field effect in atomically thin carbon films;Novoselov;Science,2004

2. Drawing conclusions from graphene;Neto;Phys. World,2006

3. The worldwide graphene flake production;Kauling;Adv. Mater.,2018

4. The electronic properties of graphene;Castro Neto;Rev. Mod. Phys.,2009

5. The band theory of graphite;Wallace;Phys. Rev.,1947

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3