Two-step implantation of gold into graphene

Author:

Trentino AlbertoORCID,Mizohata KenichiroORCID,Zagler GeorgORCID,Längle ManuelORCID,Mustonen KimmoORCID,Susi TomaORCID,Kotakoski JaniORCID,Åhlgren E HarrietORCID

Abstract

Abstract As a one-atom thick, mechanically strong, and chemically stable material with unique electronic properties, graphene can serve as the basis for a large number of applications. One way to tailor its properties is the controlled introduction of covalently bound heteroatoms into the lattice. In this study, we demonstrate efficient implantation of individual gold atoms into graphene up to a concentration of 1.7 × 1011 atoms cm−2 via a two-step low-energy ion implantation technique that overcomes the limitation posed by momentum conservation on the mass of the implanted species. Atomic resolution scanning transmission electron microscopy imaging and electron energy-loss spectroscopy reveal gold atoms occupying double vacancy sites in the graphene lattice. The covalently bound gold atoms can sustain intense electron irradiation at 60 kV during the microscopy experiments. At best, only limited indication of plasmonic enhancement is observed. The method demonstrated here can be used to introduce a controlled concentration of gold atoms into graphene, and should also work for other heavier elements with similar electronic structure.

Funder

Austrian Science Fund

H2020 European Research Council

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3