Pressure-driven superconductivity in layered isostructural germanium phosphides

Author:

Huang Junwei,Zhang CaorongORCID,Zhai KunORCID,Qin Feng,Ao Lingyi,Li Zeya,Zhou Ling,Tang Ming,Dai Xueting,Qiu Caiyu,Zhang YiORCID,Wen Fusheng,Liu Zhongyuan,Yuan Hongtao

Abstract

Abstract The discovery of superconductivity and its modulation are long-standing cutting-edge research topics in condensed matter physics. As a powerful tool, the high-pressure technique can be used to achieve novel superconductors and tune their physical properties. One typical example is binary germanium phosphides with different stoichiometries, which exhibit abundant physical properties with layered lattice structures similar to blue phosphorus. The detailed phase diagrams of the Ge–P systems are important for understanding the influence of stoichiometry on pressure-driven superconductivity, but it remains unexplored. Here, we measured and compared the detailed superconducting phase diagrams of the Ge–P systems of layered isostructural germanium phosphides GeP3 and GeP5 under pressure. Even though these two binary phosphides exhibit obviously different atomic occupations in the crystal structure due to their distinct stoichiometric ratios, the onset superconducting transition temperatures T c of GeP3 and GeP5 both show dramatic enhancements from ∼2.5 K at 12.0 GPa to the maximum values of ∼9.0 K at 28.0 GPa, which are higher than those of other binary metal phosphides. Such pressure-enhanced superconductivity therein is accompanied by significant pressure-induced phonon mode softening, which is confirmed via in situ high-pressure Raman measurements. Our observations deepen the physical understanding of pressure-driven superconductivity in phosphorous-rich layered compounds and pave the way for potential applications in microsuperconducting devices.

Funder

Joint Funds of the National Natural Science Foundations of China

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Emergence of Superconductivity in Indium Triphosphate via Pressure‐Tuned Interlayer Bond Formation;physica status solidi (RRL) – Rapid Research Letters;2024-08-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3