In situ study of two-dimensional dendritic growth of hexagonal boron nitride

Author:

Felter Janina,Raths Miriam,Franke Markus,Kumpf ChristianORCID

Abstract

Abstract Hexagonal boron nitride, often entitled the ‘white graphene’ because of its large band gap, is one of the most important two-dimensional (2D) materials and frequently investigated in context with stacked arrays of single 2D layers, so called van der Waals heterostructures. Here, we concentrate on the growth of hBN on the coinage metal surface Cu(1 1 1). Using low energy electron microscopy and diffraction, we investigate the self-terminated growth of the first layer in situ and in real time. Most prominently, we find dendritic structures with three strongly preferred growth branches that are mostly well aligned with the Cu(1 1 1) substrate and exhibit a three-fold symmetric shape. The observation of dendritic structures is very surprising since hBN was found to grow in compact, triangular-shaped islands on many other metal substrates, in particular, on transition metal surfaces where it shows a much stronger interaction to the surface. We explain the unexpected dendritic growth by an asymmetry of the bonding energy for the two possible ways a borazine molecule can attach to an existing hBN island, namely either with one of its boron or one of its nitrogen atoms. We suggest that this asymmetry originates from different dehydrogenation states of the adsorbed borazine molecules and the hBN islands. We call this mechanism ‘Dehydrogenation Limited Aggregation’ since it is generic in the sense that it is merely based on different dehydrogenation energies for the involved building blocks forming the 2D layer.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Gemeinschaft

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3