Abstract
Abstract
We report on observation of the infrared photoresistance of twisted bilayer graphene (tBLG) under continuous quantum cascade laser illumination at a frequency of 57.1 THz. The photoresistance shows an intricate sign-alternating behavior under variations of temperature and back gate voltage, and exhibits giant resonance-like enhancements at certain gate voltages. The structure of the photoresponse correlates with weaker features in the dark dc resistance reflecting the complex band structure of tBLG. It is shown that the observed photoresistance is well captured by a bolometric model describing the electron and hole gas heating, which implies an ultrafast thermalization of the photoexcited electron–hole pairs in the whole range of studied temperatures and back gate voltages. We establish that photoresistance can serve a highly sensitive probe of the temperature variations of electronic transport in tBLG.
Funder
European Union
Fundación Cellex
Agencia Estatal de Investigación
Volkswagen Foundation
FUNDACIÓ Privada MIR-PUIG
Japan Society for the Promotion of Science
KAKENHI
H2020 European Research Council
Deutsche Forschungsgemeinschaft
Foundation for Polish Science
Generalitat de Catalunya
Ministry of Economy and Competitiveness
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献