The interplay of topology and antiferromagnetic order in two-dimensional van der Waals crystals of (Ni x Fe1−x )2P2S6

Author:

Khan NORCID,Kumar DORCID,Kumar V,Shemerliuk Y,Selter SORCID,Büchner B,Pal K,Aswartham S,Kumar Pradeep

Abstract

Abstract The Mermin–Wagner theorem forbids spontaneous symmetry breaking of spins in one/two-dimensional (2D) systems at a finite temperature and rules out the stabilization of this ordered state. However, it does not apply to all types of phase transitions in low dimensions, such as the topologically ordered phase rigorously shown by Berezinskii–Kosterlitz–Thouless (BKT) and experimentally realized in very limited systems such as superfluids and superconducting thin films. Quasi-2D van der Waals magnets provide an ideal platform to investigate the fundamentals of low-dimensional magnetism. We explored the quasi-2D honeycomb antiferromagnetic single crystals of (Ni x Fe1−x )2P2S6 (x = 1, 0.7, 0.5, 0.3, and 0) using in-depth temperature-dependent Raman measurements supported by first-principles calculations of the phonon frequencies. Quite surprisingly, we observed renormalization of the phonon modes much below the long-range magnetic ordered temperature attributed to the topological ordered state, namely the BKT phase, which is also found to change as a function of doping. The extracted critical exponent of the order-parameter (spin–spin correlation length, ξ ( T ) ) evinces the signature of a topologically active state driven by vortex–antivortex excitations. As a function of doping, a tunable transition from paramagnetic to antiferromagnetic ordering is shown via phonons reflected in the strong renormalization of the self-energy parameters of the Raman active phonon modes. The extracted exchange parameter (J) is found to vary by ∼100% by increasing the value of doping, ranging from ∼6 meV (for x = 0.3) to 13 meV (for x = 1).

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3