Mono- to few-layer non-van der Waals 2D lanthanide-doped NaYF4 nanosheets with upconversion luminescence

Author:

Clarke ChristianORCID,Singh Mandeep,Tawfik Sherif AbdulkaderORCID,Xu Xiaoxue,Spencer Michelle J SORCID,Ramanathan Rajesh,Reineck Philipp,Bansal VipulORCID,Ton-That CuongORCID

Abstract

Abstract NaYF4 is an efficient host material for lanthanide-based upconversion luminescence and has attracted immense interest for potential applications in photovoltaics, lasers and bioimaging. However, being a non-van der Waals (non-vdW) material, there have been thus far no reports on exfoliation of bulk NaYF4 to nanosheets and their upconversion luminescence properties. Here, we demonstrate for the first time the fabrication of lanthanide-containing NaYF4 2D nanosheets using a soft liquid-phase exfoliation method and report on their optical, electronic and chemical characteristics. The nanosheets exfoliated from NaYF4:Yb,Er microcrystals consisting mainly of β-NaYF4 become enriched in α-NaYF4 post exfoliation and have a large micron-sized planar area with a preferential (100) surface orientation. X-ray absorption spectroscopy confirms that both Yb and Er doping ions are retained in the exfoliated nanosheets. Through centrifugation, NaYF4 2D nanosheets are successfully obtained with thicknesses ranging from a monolayer to tens of layers. Optical analysis of individual nanosheets shows that they exhibit both optical down-conversion and upconversion properties, albeit with reduced emission intensities compared with the parent microparticles. Further exploration of their electronic structure by density functional theory (DFT) calculations and photoelectron spectroscopy reveals the formation of surface F atom defects and a shrinkage of the electronic bandgap in ultrathin nanosheets. Our findings will trigger further interest in non-vdW 2D upconversion nanomaterials.

Funder

Australian Research Council

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3