Abstract
Abstract
Two-dimensional transition metal dichalcogenides (TMDs) have been proposed for a wide variety of applications, such as neuromorphic computing, flexible field effect transistors, photonics, and solar cells, among others. However, for most of these applications to be feasible, it is necessary to integrate these materials with the current existing silicon technology. Although chemical vapor deposition is a promising method for the growth of high-quality and large-area TMD crystals, the high temperatures necessary for the growth make this technique incompatible with the processes used in the semiconductor industry. Herein, we demonstrate the possibility of low-temperature growth of TMDs, using tungsten selenide (WSe2) as a model, by simply using moisture-assisted defective tungsten oxide (WO3) precursor powders during the growth of these materials. Density functional theory calculations reveal the mechanism by which moisture promotes the defect formation on the precursor crystal structure and how it dictates the reduction of the temperature of the growth. The results were compared with the standard growth at high temperatures and with a precursor mixture with alkali salts to show the high quality of the WSe2 grown at temperatures as low as 550 °C. To conclude, the work improves the understanding of nucleation and growth mechanisms of WSe2 at low temperatures and provides a useful strategy for the growth of TMDs at temperatures required for the back-end-of-line compatibility with current silicon technology.
Funder
Air Force Office of Scientific Research
CAPES
DOE Office of Science User Facility
Brazilian Ministry of Education
Center of Nanophase Materials Sciences
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献