The true corrugation of a h-BN nanomesh layer

Author:

de Lima L HORCID,Greber TORCID,Muntwiler MORCID

Abstract

Abstract Hexagonal boron nitride (h-BN) nanomesh, a two-dimensional insulating monolayer, grown on the (111) surface of rhodium exhibits an intriguing hexagonal corrugation pattern with a lattice constant of 3.2 nm. Despite numerous experimental and theoretical studies no quantitative agreement has been found on some details of the adsorption geometry such as the corrugation amplitude. The issue highlights the differences in chemical and electronic environment in the strongly bound pore regions and the weakly bound wire regions of the corrugated structure. For reliable results it is important to probe the structure with a method that is intrinsically sensitive to the position of the atomic cores rather than the electron density of states. In this work, we determine the corrugation of h-BN nanomesh from angle- and energy-resolved photoelectron diffraction measurements with chemical state resolution. By combining the results from angle and energy scans and comparing them to multiple-scattering simulations true adsorbate-substrate distance can be measured with high precision, avoiding pitfalls of apparent topography observed in scanning probe techniques. Our experimental results give accurate values for the peak-to-peak corrugation amplitude (0.80 Å), the bonding distance to the substrate (2.20 Å) and the buckling of the boron and nitrogen atoms in the strongly bound pore regions (0.07 Å). These results are important for the development of theoretical methods that involve a quantitative description of van der Waals systems as required for the understanding of the physics of two-dimensional sp2 layers.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Amparo à Pesquisa do Estado de São Paulo

Publisher

IOP Publishing

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3