Scanning electrochemical probe microscopy investigation of two-dimensional materials

Author:

Adanigbo Pelumi,Romo-Jimenez Jorge,Zhang KaidiORCID,Maroo Sonal,Bediako KwabenaORCID,Yu YunORCID

Abstract

Abstract Research interests in two-dimensional (2D) materials have seen exponential growth owing to their unique and fascinating properties. The highly exposed lattice planes coupled with tunable electronic states of 2D materials have created manifold opportunities in the design of new platforms for energy conversion and sensing applications. Still, challenges in understanding the electrochemical (EC) characteristics of these materials arise from the complexity of both intrinsic and extrinsic heterogeneities that can obscure structure–activity correlations. Scanning EC probe microscopic investigations offer unique benefits in disclosing local EC reactivities at the nanoscale level that are otherwise inaccessible with macroscale methods. This review summarizes recent progress in applying techniques of scanning EC microscopy (SECM) and scanning EC cell microscopy (SECCM) to obtain distinctive insights into the fundamentals of 2D electrodes. We showcase the capabilities of EC microscopies in addressing the roles of defects, thickness, environments, strain, phase, stacking, and many other aspects in the heterogeneous electron transfer, ion transport, electrocatalysis, and photoelectrochemistry of representative 2D materials and their derivatives. Perspectives for the advantages, challenges, and future opportunities of scanning EC probe microscopy investigation of 2D structures are discussed.

Funder

the US Department of Energy, Office of Science, Office of Basic Energy Sciences

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3