Abstract
Abstract
Surface textures have been of great interest within the tribology community with nearly 1500 papers published on this topic in the past two decades. With the pursuit of low emissions and environmental sustainability, the application of surface texturing to mechanical systems to lower friction and control wear is attracting increasing attention. There is no doubt that certain textured surfaces can have a beneficial effect on tribological performance but it is widely agreed that the optimization of textures should be carried out based on specific requirements of applications. The purpose of this review article is to summarize the current state of the art in surface texturing applied to mechanical applications (cutting tools, piston-ring & cylinder liners, sealing and journal bearings) from the following aspects: application requirements, numerical/experimental testing and validation, and tribological performance of textured surfaces (wear and friction), as well as the limitations in texture designs when applied to certain applications. Patterns/grooves in the micron-scale are the most typical shapes been studied, and benefits of partial texturing are applicable for most of these mechanical applications. Friction reduction of up to 34.5% in cutting tools, 82% in piston-ring & cylinder-liners, 65% in seals and 18% in journal bearings have been observed by experimental tests. Based on primary evidence from the literature, the last section provides general suggestions on current gaps in understanding and modelling and suggestions for future research directions.
Subject
Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation
Cited by
119 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献