An improved FFT method for shot peening surface reconstruction

Author:

Xia FujiaORCID,Tang Jinyuan,Li Lin,Yang DuoORCID,Zhao Jiuyue

Abstract

Abstract Shot peening is the efficient method for metal surface modification and performance improvement. However, there is still no effective way to establishing the mathematical model for shot peening surface reconstruction, resulting in restricting the correlation study between shot peening surface properties and morphology. The difficulty of shot peening surface reconstruction lies in how to accurately characterize the roughness surface height and texture features. Therefore, a novel method of generating non-Gaussian sequences with specified height roughness parameters is proposed in this paper. Fast Fourier transform (FFT) method gets improved combined with the new method, which overcome the predicament that the unimproved FFT cannot ensure the height features in the reconstructed shot peening surfaces. In addition, a new autocorrelation function in shot peening surfaces is proposed to accurately characterize the reconstructed surface texture. The experimental results show that with the improved FFT method and the new autocorrelation function introduced to shot peening surface reconstruction, the maximum error of the seven height roughness parameters in the reconstructed surface is 2.201%. And the texture features and height distribution of the reconstructed surface are in good agreement with the measured surface.

Funder

Key R&D Program of China

Defense Industrial Technology Development Program

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3