Nanoprecipitates enhanced wear resistance of laser powder bed fusion-processed high-strength Al−Cu−Mg−Si−Ti alloy

Author:

Wang Qingzheng,El Mansori Mohamed,El hadrouz MouradORCID,Kang NanORCID,Lin Xin

Abstract

Abstract Solidification cracking during laser powder bed fusion (LPBF) and poor wear resistance of high-strength aluminum alloys hinder their application in aerospace and automotive fields. In the present work, a novel defect-free Al-Cu-Mg-Si-Ti alloy was manufactured by LPBF. The densification behavior research shows that the threshold value to manufacture the full-density Al-Cu-Mg-Si-Ti alloy by LPBF is a volumetric energy density (VED) of 141.7 J mm−3. The LPBF processed sample shows a heterogeneous microstructure consisting of ultrafine equiaxed grains and columnar grains. Dry sliding tests indicate that the wear rate of the as-built samples is 3.9 ± 0.4 × 10−5 cm3 m−1 with dominant abrasive wear under an applied load of 2.1 N. At an applied load of 24 N, the wear mechanism transforms to severe delamination and abrasion with a high wear rate of 42.1 ± 0.1 × 10−5 cm3 m−1. After the aging treatment, the size and number density of nanosized S’ and Q’ precipitated phases increase significantly, which results in an increased hardness and better wear resistance.

Funder

China Scholarship Council

Research Fund of the State Key Laboratory of Solidification Processing

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Materials Chemistry,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3