Precision of diamond turning sinusoidal structures as measurement standards used to assess topography fidelity

Author:

Hüser DorotheeORCID,Meeß RudolfORCID,Dai GaoliangORCID,Felgner AndréORCID,Hahm KaiORCID,Verhülsdonk StefanORCID,Feist CarstenORCID,Gao SaiORCID

Abstract

Abstract In optical surface metrology, it is crucial to assess the fidelity of the topography measuring signals. One parameter to quantify this is the small-scale fidelity limit T FIL defined in ISO 25 178-600:2019. To determine this parameter, sinusoidal structures are generated, where the wavelengths are modulated according to a discrete chirp series. The objects are produced by means of ultra-precision diamond face turning. Planar areas and regions with slopes below 4° could be produced with form deviations of ≲10 nm. An initial estimate of the cutting tool’s nose radius resulted in a deviation that caused the ridges of the structures to be too narrow by approximately 150 nm, while the trenches were too wide. At the bottom of narrow trenches, deviations are observed in the form of elevations with heights of about 20 to 100 nm. The measurement standard investigated in this study has also been used to characterise optical instruments in a round-robin test within the European project TracOptic, which requires precise knowledge of the geometry of all structures. The geometry of the topography, cosine structures superimposed with form deviations, was measured using the Met. LR-AFM metrological long-range atomic force microscope of the German National Metrology Institute.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3